{ "cells": [ { "cell_type": "markdown", "id": "53f1f89d", "metadata": {}, "source": [ "# 4.7 量子系统的仿真" ] }, { "cell_type": "markdown", "id": "d5712954", "metadata": {}, "source": [ "## 练习 4.46 (量子系统复杂性的指数增长)" ] }, { "cell_type": "markdown", "id": "e06b3425", "metadata": {}, "source": [ ":::{admonition} 练习 4.46\n", "\n", "令 $\\rho$ 是描述 $n$ 量子比特状态的一个密度矩阵,证明对 $\\rho$ 的描述需要 $4^n - 1$ 个独立实数。\n", "\n", ":::" ] }, { "cell_type": "markdown", "id": "d827c553", "metadata": {}, "source": [ ":::{warning}\n", "\n", "我其实不清楚,为何一定要是实数。下面是混合复数与实数的说明。\n", "\n", ":::" ] }, { "cell_type": "markdown", "id": "1547f5d0", "metadata": {}, "source": [ "一种说明方式是,对于 $n$ 量子比特,其态向量是 $2^n$ 维度的;那么其构成的矩阵也便是 $4^n$ 大小的。但由于迹 $\\mathrm{tr} (\\rho) = 1$,因此独立数为 $4^n - 1$。" ] }, { "cell_type": "markdown", "id": "948da2b2", "metadata": {}, "source": [ "另一种说明方式是,态向量维度是 $2^n$;但由于归一化条件受限,因此不考虑全局相位的话,描述一个态的实际变量数是 $2^n - 1$。在 $2^n$ 维空间下,相互正交的态也必然存在 $2^n$ 个。对于一个系综,这 $2^n$ 个态各自对应其出现概率,但由于概率之和是 1,因此概率变量数总共是 $2^n - 1$。因此,将态变量数与态存在数相乘,再加上概率变量数,得到\n", "\n", "$$\n", "(2^n - 1) \\times 2^n + 2^n - 1 = 4^n - 1\n", "$$" ] }, { "cell_type": "markdown", "id": "a8713e06", "metadata": {}, "source": [ "## 练习 4.47" ] }, { "cell_type": "markdown", "id": "a927e598", "metadata": {}, "source": [ ":::{admonition} 练习 4.47\n", "\n", "对 $H = \\sum_k^L H_k$,证明若对所有的 $j, k$ 都有 $[H_j, H_k] = 0$,则对所有的 $t$,\n", "\n", "$$\n", "e^{-i H t} = \\prod_k^L e^{-i H_k t} = e^{-i H_1 t} e^{-i H_2 t} \\cdots e^{-i H_L t}\n", "$$\n", "\n", ":::" ] }, { "cell_type": "markdown", "id": "06811418", "metadata": {}, "source": [ "该练习的证明思路很简单。我们考虑这样的问题:若 $[A, B] = 0$ 即 $A, B$ 可对易,那么 $e^{A+B} = e^A e^B$ 是否成立?\n", "\n", "显然是成立的。我们将其作 Taylor 展开到两阶,并利用 $AB = BA$,有:\n", "\n", "$$\n", "\\begin{align*}\n", "e^{A+B} &= 1 + (A+B) + \\frac{1}{2} (A^2 + AB + BA + B^2) + O \\big( (A+B)^3 \\big) \\\\\n", "&= 1 + (A+B) + \\frac{1}{2} (A^2 + 2 AB + B^2) + O \\big( (A+B)^3 \\big) \\\\\n", "e^{A} e^{B} &= \\left( 1 + A + \\frac{1}{2} A^2 + O (A^3) \\right) \\left( 1 + B + \\frac{1}{2} B^2 + O(B^3) \\right) \\\\\n", "&= 1 + (A+B) + \\frac{1}{2} (A^2 + 2 AB + B^2) + A^2 B + A B^2 + \\frac{1}{4} A^2 B^2 + O(A^3) + B(B^3)\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "id": "3b7a121d", "metadata": {}, "source": [ "我们发现若只展开到二次幂,它们都具有 $1/2 (A^2 + 2AB + B^2)$ 的形式。注意到这利用了 $A, B$ 的可对易性质。这对于更高次幂其实都成立。严格的证明尽管与二项式定理基本一致,但过程稍微需要一些功夫。" ] }, { "cell_type": "markdown", "id": "27d13597", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "id": "51c79823", "metadata": {}, "source": [ "首先我们化简问题。我们令 $M_k = -i H_k t$ 是关于 $t$ 的矩阵;但我们会发现时间 $t$ 和负系数 $i$ 在这道题证明中没有什么意义。因此,若 $M = \\sum_k^L M_k$,那么原先问题化为\n", "\n", "$$\n", "e^M = \\prod_k^L e^{M_k} = e^{M_1} e^{M_2} \\cdots e^{M_L}\n", "$$\n", "\n", "同时,另一个题目条件化为了 $[M_j, M_k] = - i t [H_j, H_k] = 0$。" ] }, { "cell_type": "markdown", "id": "1524604c", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "id": "af972e37", "metadata": {}, "source": [ "使用数学归纳法。若 $A = \\sum_k^{L-1} M_k$ 时,等式 $e^A = \\prod_k^{L-1} e^{M_k}$ 成立;那么对于 $L$ 的情况,我们假设 $B = M_L$,那么 $A = M - M_L$。若 $e^M = e^{A+B} = e^A e^B$ 成立,那么一方面,该等式很容易地推广到 $L=2$ 的情形,归纳法所需要的初始情况得到满足;另一方面,这也符合归纳法对于递增的 $L$ 的要求。" ] }, { "cell_type": "markdown", "id": "5688a8fd", "metadata": {}, "source": [ "我们同时考察 $[A, B]$:\n", "\n", "$$\n", "[A, B] = \\left[ \\sum_k^{L-1} M_k, M_L \\right] = \\sum_{k}^{L-1} [M_k, M_L] = 0\n", "$$" ] }, { "cell_type": "markdown", "id": "7dacbae2", "metadata": {}, "source": [ "因此,原题化为了下述问题:若 $[A, B] = 0$ 即 $A, B$ 可对易,那么证明 $e^{A+B} = e^A e^B$。这就完成了问题的化简。" ] }, { "cell_type": "markdown", "id": "c105db89", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "id": "87085c2f", "metadata": {}, "source": [ "我们知道,\n", "\n", "$$\n", "e^{A+B} = \\sum_{\\gamma=0}^\\infty \\frac{1}{\\gamma!} (A+B)^\\gamma, \\quad e^A e^B = \\sum_{\\alpha=0}^\\infty \\frac{1}{\\alpha!} A^\\alpha \\sum_{\\beta=0}^\\infty \\frac{1}{\\beta!} B^\\beta = \\sum_{\\gamma=0}^\\infty \\sum_{\\lambda=0}^\\gamma \\frac{1}{\\lambda! (\\gamma - \\lambda)!} A^\\lambda B^{\\gamma - \\lambda}\n", "$$" ] }, { "cell_type": "markdown", "id": "8d789939", "metadata": {}, "source": [ "那么若下述等式对任意自然数 $\\gamma$ 成立,那么 $e^{A+B} = e^A e^B$:\n", "\n", "$$\n", "\\frac{1}{\\gamma!} (A+B)^\\gamma = \\sum_{\\lambda=0}^\\gamma \\frac{1}{\\lambda! (\\gamma - \\lambda)!} A^\\lambda B^{\\gamma - \\lambda}\n", "$$" ] }, { "cell_type": "markdown", "id": "f8c60d9e", "metadata": {}, "source": [ "下面我们证明上述等式。实际上这与二项式定理的证明几乎一致。使用数学归纳法。显然 $\\gamma = 0$ 时成立;那么对于 $\\gamma + 1$ 的情况,\n", "\n", "$$\n", "\\begin{align*}\n", "\\frac{1}{(\\gamma+1)!} (A+B)^{\\gamma+1} &= \\frac{1}{\\gamma+1} \\frac{1}{\\gamma!} (A+B)^{\\gamma} (A+B) \\\\\n", "&= \\frac{1}{\\gamma+1} \\sum_{\\lambda=0}^\\gamma \\frac{1}{\\lambda! (\\gamma - \\lambda)!} A^\\lambda B^{\\gamma - \\lambda} (A+B)\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "id": "c3bf751b", "metadata": {}, "source": [ "利用可对易性,易知\n", "\n", "$$\n", "\\begin{align*}\n", "A^\\lambda B^{\\gamma - \\lambda} (A+B) &= A^\\lambda B^{\\gamma - \\lambda} A + A^\\lambda B^{\\gamma - \\lambda} B = A^\\lambda A B^{\\gamma - \\lambda} + A^\\lambda B^{\\gamma - \\lambda} B \\\\&= A^{\\lambda+1} B^{\\gamma - \\lambda} + A^\\lambda B^{\\gamma - \\lambda+1}\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "id": "b653561a", "metadata": {}, "source": [ "因此,\n", "\n", "$$\n", "\\frac{1}{(\\gamma+1)!} (A+B)^{\\gamma+1} = \\frac{1}{\\gamma+1} \\left(\\sum_{\\lambda=0}^\\gamma \\frac{1}{\\lambda! (\\gamma - \\lambda)!} A^{\\lambda+1} B^{\\gamma - \\lambda} + \\sum_{\\lambda=0}^\\gamma \\frac{1}{\\lambda! (\\gamma - \\lambda)!} A^\\lambda B^{\\gamma - \\lambda+1} \\right)\n", "$$" ] }, { "cell_type": "markdown", "id": "a780d4f1", "metadata": {}, "source": [ "我们将等是右边的第一个求和角标的 $\\lambda + 1$ 替换为 $\\lambda$,重新组织求和过程:\n", "\n", "$$\n", "\\begin{align*}\n", "\\frac{1}{(\\gamma+1)!} (A+B)^{\\gamma+1} &= \\frac{1}{\\gamma+1} \\left(\\sum_{\\lambda=1}^{\\gamma+1} \\frac{1}{(\\lambda-1)! (\\gamma - \\lambda + 1)!} A^{\\lambda} B^{\\gamma - \\lambda + 1} + \\sum_{\\lambda=0}^\\gamma \\frac{1}{\\lambda! (\\gamma - \\lambda)!} A^\\lambda B^{\\gamma - \\lambda+1} \\right) \\\\\n", "&= \\frac{1}{\\gamma+1} \\sum_{\\lambda=1}^{\\gamma} \\left( \\frac{1}{(\\lambda-1)! (\\gamma - \\lambda + 1)!} + \\frac{1}{\\lambda! (\\gamma - \\lambda)!} \\right) A^{\\lambda} B^{\\gamma - \\lambda + 1} + \\frac{1}{(\\gamma+1)!} A^0 B^{\\gamma+1} + \\frac{1}{(\\gamma+1)!} A^{\\gamma+1} B^0\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "id": "047901f6", "metadata": {}, "source": [ "对于 $\\lambda = 1, 2, \\cdots, \\gamma$ 时,\n", "\n", "$$\n", "\\frac{1}{(\\lambda-1)! (\\gamma - \\lambda + 1)!} + \\frac{1}{\\lambda! (\\gamma - \\lambda)!} = \\frac{(\\lambda) + (\\gamma - \\lambda + 1)}{\\lambda! (\\gamma - \\lambda + 1)!} = \\frac{\\gamma + 1}{\\lambda! (\\gamma - \\lambda + 1)!}\n", "$$" ] }, { "cell_type": "markdown", "id": "08a4a277", "metadata": {}, "source": [ "因此,\n", "\n", "$$\n", "\\frac{1}{(\\gamma+1)!} (A+B)^{\\gamma+1} = \\sum_{\\lambda=1}^{\\gamma+1} \\frac{1}{\\lambda! (\\gamma - \\lambda + 1)!} A^{\\lambda} B^{\\gamma - \\lambda + 1} + \\frac{1}{(\\gamma+1)!} A^{\\gamma+1} B^0 = \\sum_{\\lambda=0}^{\\gamma+1} \\frac{1}{\\lambda! (\\gamma - \\lambda + 1)!} A^{\\lambda} B^{\\gamma - \\lambda + 1}\n", "$$" ] }, { "cell_type": "markdown", "id": "346d190a", "metadata": {}, "source": [ "依据数学归纳法,证明完毕。" ] }, { "cell_type": "markdown", "id": "e94f5ec3", "metadata": {}, "source": [ "## 练习 4.48" ] }, { "cell_type": "markdown", "id": "a195654d", "metadata": {}, "source": [ ":::{admonition} 练习 4.48\n", "\n", "若对于 $n$ 粒子体系,每个算符 $H_k$ 最多影响 $c$ 个粒子,那么这意味着式 (4.97) 中求和上限 $L$ 至多是关于 $n$ 的多项式。\n", "\n", "$$\n", "H = \\sum_{k=1}^L H_k \\tag{4.97}\n", "$$\n", "\n", ":::" ] }, { "cell_type": "markdown", "id": "e1f9db03", "metadata": {}, "source": [ "题目暗含的意思是在这种情况下,$L$ 并不随着 $n$ 呈指数级变化。" ] }, { "cell_type": "markdown", "id": "91a010fd", "metadata": {}, "source": [ "这类算符实际上也称为 $c$ 体算符 ($c$-Body Operator),即作用于 $c$ 个粒子的算符。在化学中,若体系在 Bohn-Oppenheimer 近似下不受特殊外场扰动,那么只会包含一体算符 (动能、外势能算符) 或二体算符 (电子互斥算符)。" ] }, { "cell_type": "markdown", "id": "5a9687e5", "metadata": {}, "source": [ "若我们用 $C_n^c$ 表示组合数,那么对于 $n$ 粒子体系,$k$ 体算符至多有 $C_n^k = n (n-1) \\cdots (n-k) < n^k$ 个。因此,\n", "\n", "$$\n", "L \\leqslant \\sum_{k=0}^c C_n^k < \\sum_{k=0}^c n^k = O(n^c)\n", "$$\n", "\n", "即 $L$ 是 $n$ 的多项式。" ] }, { "cell_type": "markdown", "id": "fd0cd895", "metadata": {}, "source": [ "## 练习 4.49 (Baker-Campbell-Hausdorf 公式)" ] }, { "cell_type": "markdown", "id": "31a636de", "metadata": {}, "source": [ ":::{admonition} 练习 4.49\n", "\n", "证明\n", "\n", "$$\n", "e^{(A+B) \\Delta t} = e^{A \\Delta t} e^{B \\Delta t} e^{- \\frac{1}{2} [A, B] \\Delta t^2} + O(\\Delta t^3)\n", "\\tag{4.105}\n", "$$\n", "\n", "并且再证明\n", "\n", "$$\n", "e^{i (A + B) \\Delta t} = e^{i A \\Delta t} e^{i B \\Delta t} + O(\\Delta t^2)\n", "\\tag{4.103}\n", "$$\n", "\n", "$$\n", "e^{i (A + B) \\Delta t} = e^{i A \\Delta t/2} e^{i B \\Delta t} e^{i A \\Delta t/2} + O(\\Delta t^3)\n", "\\tag{4.104}\n", "$$\n", "\n", ":::" ] }, { "cell_type": "markdown", "id": "5c9efe78", "metadata": {}, "source": [ "需要注意这里不一定有 $[A, B] = 0$ 的条件了。我们首先展开式 (4.105) 的左侧:\n", "\n", "$$\n", "\\begin{align*}\n", "e^{(A+B) \\Delta t} &= 1 + (A+B) \\Delta t + \\frac{1}{2} (A+B)^2 \\Delta^2 + O(\\Delta t^3) \\\\\n", "&= 1 + (A + B) \\Delta t + \\frac{1}{2} (A^2 + AB + BA + B^2) \\Delta t^2 + O(\\Delta t^3)\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "id": "6c01d0e0", "metadata": {}, "source": [ "再考察式 (4.105) 的右侧并回顾到 $[A, B] = AB - BA$:\n", "\n", "$$\n", "\\begin{align*}\n", "e^{A \\Delta t} e^{B \\Delta t} e^{- \\frac{1}{2} [A, B] \\Delta t^2}\n", "&= \\left( 1 + A \\Delta t + \\frac{1}{2} A^2 \\Delta t^2 \\right) \\left( 1 + B \\Delta t + \\frac{1}{2} B^2 \\Delta t^2 \\right) \\left( 1 - \\frac{1}{2} [A, B] \\Delta t^2 \\right) + O(\\Delta t^3) \\\\\n", "&= 1 + (A + B) \\Delta t + \\left( \\frac{1}{2} A^2 + \\frac{1}{2} B^2 + AB - \\frac{1}{2} [A, B] \\right) \\Delta t^2 + O(\\Delta t^3) \\\\\n", "&= 1 + (A + B) \\Delta t + \\frac{1}{2} (A^2 + AB + BA + B^2) \\Delta t^2 + O(\\Delta t^3)\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "id": "1e39d9f6", "metadata": {}, "source": [ "因此,式 (4.105) 在忽略 $O(\\Delta t^3)$ 小量下是等价的。" ] }, { "cell_type": "markdown", "id": "e31b6d03", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "id": "e7216dbd", "metadata": {}, "source": [ "式 (4.103) 的证明过程仿上,很容易给出。" ] }, { "cell_type": "markdown", "id": "cbb6ec11", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "id": "db2f6be2", "metadata": {}, "source": [ "式 (4.104) 的证明固然也可以仿照 (4.105) 对指数作 Taylor 展开。但我们也可以利用 (4.105) 的结论。我们指出,Baker-Campbell-Hausdorf 公式还可以写成下述形式:\n", "\n", "$$\n", "e^{(A+B) \\Delta t} = e^{A \\Delta t} e^{B \\Delta t} e^{- \\frac{1}{2} [A, B] \\Delta t^2} + O(\\Delta t^3) = e^{(A+B) \\Delta t} = e^{- \\frac{1}{2} [B, A] \\Delta t^2} e^{B \\Delta t} e^{A \\Delta t} + O(\\Delta t^3)\n", "$$\n", "\n", "证明过程仿上。我们同时注意到 $[A, B] = - [B, A]$,因此 (系数 $i$ 不影响证明)," ] }, { "cell_type": "markdown", "id": "3b00af33", "metadata": {}, "source": [ "$$\n", "\\begin{align*}\n", "e^{i (A+B) \\Delta t} &= e^{i \\frac{1}{2} (A+B) \\Delta t} e^{\\frac{1}{2} i (A+B) \\Delta t} \\\\\n", "&= \\big( e^{i \\frac{1}{2} A \\Delta t} e^{i \\frac{1}{2} B \\Delta t} e^{- i \\frac{1}{4} [A, B] \\Delta t^2} + O(\\Delta t^3) \\big) \\big( e^{- i \\frac{1}{4} [B, A] \\Delta t^2} e^{i \\frac{1}{2} B \\Delta t} e^{i \\frac{1}{2} A \\Delta t} + O(\\Delta t^3) \\big) \\\\\n", "&= e^{i \\frac{1}{2} A \\Delta t} e^{i \\frac{1}{2} B \\Delta t} e^{- i \\frac{1}{4} [A, B] \\Delta t^2} e^{- i \\frac{1}{4} [B, A] \\Delta t^2} e^{i \\frac{1}{2} B \\Delta t} e^{i \\frac{1}{2} A \\Delta t} + O(\\Delta t^3) \\\\\n", "&= e^{i \\frac{1}{2} A \\Delta t} e^{i \\frac{1}{2} B \\Delta t} e^{i \\frac{1}{2} B \\Delta t} e^{i \\frac{1}{2} A \\Delta t} + O(\\Delta t^3) \\\\\n", "&= e^{i \\frac{1}{2} A \\Delta t} e^{i B \\Delta t} e^{i \\frac{1}{2} A \\Delta t} + O(\\Delta t^3)\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "id": "a101e4d0", "metadata": {}, "source": [ "上式三次利用了练习 4.47 的推演结论,即若 $[A, B] = 0$ 则 $e^{A+B} = e^A e^B$。" ] }, { "cell_type": "markdown", "id": "d18debbf", "metadata": {}, "source": [ "## 练习 4.50" ] }, { "cell_type": "markdown", "id": "c26da067", "metadata": {}, "source": [ ":::{admonition} 练习 4.50\n", "\n", "令 $H = \\sum_k^L H_k$,且定义\n", "\n", "$$\n", "U_{\\Delta t} = \\big( e^{- i H_1 \\Delta t} e^{- i H_2 \\Delta t} \\cdots e^{- i H_L \\Delta t} \\big) \\big( e^{- i H_L \\Delta t} \\cdots e^{- i H_2 \\Delta t} e^{- i H_1 \\Delta t} \\big)\n", "$$\n", "\n", "1. 证明 $U_{\\Delta t} = e^{- 2 i H \\Delta t} + O(\\Delta t^3)$;\n", "2. 利用盒子 4.1 的结果,证明对某个常数 $\\alpha$ 与任意正整数 $m$,有\n", "\n", " $$\n", " E(U_{\\Delta t}^m, e^{-2mi H \\Delta t}) \\leqslant m \\alpha \\Delta t^3\n", " $$\n", "\n", ":::" ] }, { "cell_type": "markdown", "id": "08b16d87", "metadata": {}, "source": [ "**第一问**" ] }, { "cell_type": "markdown", "id": "808290f3", "metadata": {}, "source": [ "反复套用式 (4.104) 就很容易给出结论:\n", "\n", "$$\n", "\\begin{align*}\n", "U_{\\Delta t} &= e^{- i H_1 \\Delta t} e^{- i H_2 \\Delta t} \\cdots e^{- i H_{L-1} \\Delta t} e^{- i H_L \\Delta t} e^{- i H_L \\Delta t} e^{- i H_{L-1} \\Delta t} \\cdots e^{- i H_2 \\Delta t} e^{- i H_1 \\Delta t} \\\\\n", "&= e^{- i H_1 \\Delta t} e^{- i H_2 \\Delta t} \\cdots e^{- 2 i (H_{L-1} + H_L) \\Delta t} \\cdots e^{- i H_2 \\Delta t} e^{- i H_1 \\Delta t} + O(\\Delta t^3) \\\\\n", "&= \\cdots \\\\\n", "&= e^{- i H_1 \\Delta t} e^{- 2 i (H_2 + H_3 + \\cdots + H_L) \\Delta t} e^{- i H_1 \\Delta t} + O(\\Delta t^3) \\\\\n", "&= e^{- 2 i (H_1 + H_2 + H_3 + \\cdots + H_L) \\Delta t} + O(\\Delta t^3) \\\\\n", "&= e^{- 2 i H \\Delta t} + O(\\Delta t^3)\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "id": "b2e377c3", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "id": "67427ab1", "metadata": {}, "source": [ "**第二问**" ] }, { "cell_type": "markdown", "id": "6e65ec48", "metadata": {}, "source": [ "简单回顾盒子 4.1 的结论 (4.69)。若序列 $V_1, V_2, \\cdots, V_m$ 用来近似某个门的另一个序列 $U_1, U_2, \\cdots, U_m$,那么\n", "\n", "$$\n", "E(U_m U_{m-1} \\cdots U_2 U_1, V_m V_{m-1} \\cdots V_2 V_1) \\leqslant \\sum_{j=1}^m E(U_j, V_j)\n", "$$" ] }, { "cell_type": "markdown", "id": "d75a02b4", "metadata": {}, "source": [ "误差记号 $E(\\cdot, \\cdot)$ 中两个参量的顺序是可以交换的。对于这道题,$V_j$ 全部是 $U_{\\Delta t}$,$U_j$ 全部是 $e^{-2iH \\Delta t}$。因此,\n", "\n", "$$\n", "E(U_{\\Delta t}^m, e^{-2mi H \\Delta t}) \\leqslant m E(U_{\\Delta t}, e^{-2i H \\Delta t})\n", "$$" ] }, { "cell_type": "markdown", "id": "51a05653", "metadata": {}, "source": [ "依据误差的定义,\n", "\n", "$$\n", "E(U_{\\Delta t}, e^{-2i H \\Delta t}) = \\max_{|\\psi\\rangle} \\left\\Vert (U_{\\Delta t} - e^{-2i H \\Delta t}) |\\psi\\rangle \\right\\Vert\n", "$$" ] }, { "cell_type": "markdown", "id": "e161940d", "metadata": {}, "source": [ "我们可以定义对于任意小的 $\\Delta t > 0$ 都有界,但并不一定是小量的算符 $D$,使得 $U_{\\Delta t} - e^{-2i H \\Delta t} = D \\Delta t^3 + O(\\Delta t)^4$,那么\n", "\n", "$$\n", "E(U_{\\Delta t}, e^{-2i H \\Delta t}) = \\max_{|\\psi\\rangle} \\left\\Vert D |\\psi\\rangle \\right\\Vert \\Delta t^3 + O(\\Delta t^4)\n", "$$" ] }, { "cell_type": "markdown", "id": "a290e81e", "metadata": {}, "source": [ "我们可以定义\n", "\n", "$$\n", "\\alpha = \\max_{|\\psi\\rangle} \\left\\Vert D |\\psi\\rangle \\right\\Vert\n", "$$\n", "\n", "因此,在这种定义下,\n", "\n", "$$\n", "E(U_{\\Delta t}^m, e^{-2mi H \\Delta t}) \\leqslant m E(U_{\\Delta t}, e^{-2i H \\Delta t}) = m \\alpha \\Delta t^3 + O(\\Delta t^4)\n", "$$" ] }, { "cell_type": "markdown", "id": "50cdf306", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "id": "9318b935", "metadata": {}, "source": [ "**补充说明**" ] }, { "cell_type": "markdown", "id": "fc534d17", "metadata": {}, "source": [ "事实上,依据线性代数的结论,$\\alpha$ 取到 $D$ 的最大本征值的绝对值。但这个 $D$ 算符与 $\\Delta t$ 无关,且 $\\alpha$ 尽管有界但不是变量,更不是可以取到任意小的误差量。\n", "\n", "因此,这个结论其实是表明,若 $\\Delta t$ 足够小,那么采用 $U_{\\Delta t}$ 来近似 $e^{- 2 i H \\Delta t}$ 确实地可以实现任意精度的量子计算仿真。我们令预期的仿真精度是 $\\delta$,那么在仿真时间长度 $t$、单个仿真时间差 $\\Delta t$ 下,我们需要 $m = t / \\Delta t$ 个仿真算符连乘。若我们取仿真时间差是\n", "\n", "$$\n", "\\Delta t < \\sqrt{\\frac{\\delta}{t \\alpha}}\n", "$$" ] }, { "cell_type": "markdown", "id": "d8bb0d1a", "metadata": {}, "source": [ "那么整个过程的仿真总误差是\n", "\n", "$$\n", "E(U_{\\Delta t}^m, e^{-2mi H \\Delta t}) \\leqslant m \\alpha \\Delta t^3 + O(\\Delta t^4) = \\frac{t}{\\Delta t} \\alpha \\Delta t^3 + O(\\Delta t^4) < \\delta + O(\\Delta t^4)\n", "$$" ] }, { "cell_type": "markdown", "id": "b90873d6", "metadata": {}, "source": [ "## 练习 4.51" ] }, { "cell_type": "markdown", "id": "4d140c97", "metadata": {}, "source": [ ":::{admonition} 练习 4.51\n", "\n", "构造一个 Hamilton 量\n", "\n", "$$\n", "H = X_1 \\otimes Y_2 \\otimes Z_3\n", "$$\n", "\n", "的量子线路,模拟对任意的 $\\Delta t$ 执行酉变换 $e^{- i \\Delta t H}$。\n", "\n", ":::" ] }, { "cell_type": "markdown", "id": "3dbeca14", "metadata": {}, "source": [ "由于\n", "\n", "$$\n", "\\begin{align*}\n", "X &= H Z H \\\\\n", "Y &= R_z \\left( \\frac{\\pi}{2} \\right) H Z H R_z \\left( - \\frac{\\pi}{2} \\right)\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "id": "36e50bbc", "metadata": {}, "source": [ "因此我们将这些分解放入线路图中,可以得到\n", "\n", "![ex-4.51.1](assets/ex-4.51.1.svg)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 5 }